Health

Breakfast Cereals Scrutinized For Pesticide That May Harm Reproduction

Authored by Sina McCullough via The Epoch Times

Imagine starting your day with a bowl of cereal that could be silently affecting your family’s health. Recent studies show that chlormequat, a pesticide linked to reproductive issues, has been found in popular breakfast cereals like Quaker Oats and Cheerios. As this substance infiltrates the American food supply, the potential risks to our health and future generations loom larger, raising urgent questions about the safety of our everyday food choices.

In a study published in the Journal of Exposure Science & Environmental Epidemiology on Feb. 15, 2024, researchers revealed alarming findings regarding the prevalence of chlormequat.

Chlormequat was detected in the urine of 4 out of 5 people or 80 percent of Americans tested. Additionally, 92 percent of oat-based foods tested contained chlormequat, including Quaker Oats and Cheerios.

This study—the first to report urinary chlormequat measurements in adults living in the United States—highlights the possible widespread presence of chlormequat and the necessity for transparency and further investigation into potential health implications for consumers.

Chlormequat, widely known in the salt form as chlormequat chloride, is an agricultural chemical first registered in the United States in 1962 as a plant growth regulator. Plant growth regulators are chemical substances employed to control and regulate plant growth, flowering, and fruit yield, according to a 2006 study in the International Journal of Andrology.

Chlormequat application in grain crops results in reduced stem height, thereby minimizing the occurrence of lodging (bending over), which can reduce the efficiency of the harvesting process.

Chlormequat is the world’s most common plant growth regulator according to a 2020 study published in Toxicology. “Chlormequat is often the most detected pesticide residue in grains and cereals, as documented by monitoring surveys spanning several years,” according to the 2024 study. It is approved for use in Europe and parts of North America.

In the United States, chlormequat is permitted exclusively for use on ornamental plants and is prohibited for application on food crops grown within the country. Therefore, the presence of chlormequat in Cheerios and other oat-based foods sold in the United States raises questions regarding its introduction into the food supply chain.

In April 2018 the United States Environmental Protection Agency (EPA) allowed chlormequat into the food supply by establishing acceptable food tolerance levels for chlormequat chloride in imported oats, wheat, barley, and select animal products. This action allowed for the importation and sale of those agricultural products even if treated with chlormequat.

Consequently, U.S. consumers may unknowingly be ingesting tainted imported foods—potentially exposing themselves to chlormequat or its residues.

In 2020, the allowable chlormequat levels were increased for oats. In April of 2023, the EPA proposed allowing the first-ever use of chlormequat on barley, oat, wheat, and triticale grown in the United States. If passed, exposure levels may increase, raising concerns about its implications on health and food safety.

Chlormequat, while not as notorious as other pesticides, has long been linked to reproductive and developmental concerns in animal research.

In the 1980s, Danish pig farmers observed reproductive declines in pigs consuming chlormequat-treated grains, according to a 2006 article in the International Journal of Andrology.

The observation led to a controlled laboratory study, which confirmed impaired reproduction. Specifically, sows fed chlormequat-treated grain experienced impaired reproduction, primarily disruptions in oestrus cycling, and difficulty mating, as cited in the 2006 article.

These findings prompted the Danish pig industry to recommend restricting the use of crops treated with chlormequat and other growth regulators (up to a maximum of 30 percent of diet energy) due to potential reproductive issues.

Similar findings were observed in 1999 when male mice exposed to chlormequat through food or drinking water demonstrated “significantly diminished fertilization and cleavage rate” of sperm, indicating a decrease in sperm function, according to a study in Reproductive Toxicology.

Of significance, the estimated intake of chlormequat in the abovementioned pig (0.0023 milligrams (mg)/kilograms (kg) body weight (bw) per day) and mouse (0.024 mg/kg bw/day) experiments fell below the reference dose published by the EPA (0.05 mg/kg bw per day) and the acceptable daily intake published by the European Food Safety Authority (0.04 mg/kg bw/day), according to the 2024 study. These findings raise concerns regarding the current established limits set by regulatory authorities.

Recent studies further demonstrate chlormequat’s reproductive and developmental toxicity, including:

  • Delayed onset of puberty: According to a 2020 study in Toxicology Letters, male rats exposed to chlormequat from postnatal day 23 to 60 demonstrated reduced prostate weight and delayed onset of puberty.
  • Reduced sperm motility: Male rats exposed to chlormequat in utero demonstrated a delayed onset of puberty as well as decreased sperm motility, according to a 2021 study in Toxicology Letters.
  • Decreased testosterone: Male adult rats exposed to chlormequat by oral gavage (delivering substances directly to the stomach via a bulb-tipped needle) demonstrated lower testicular weight, decreased sperm motility, and decreased testicular testosterone, according to a 2018 study in Toxicology Letters.

Moreover, developmental toxicity studies suggest that chlormequat exposure during pregnancy can disrupt fetal growth and metabolism postnatally, indicating a lasting impact on offspring development in rats. For instance, a 2020 study published in Toxicology reported maternal exposure to chlormequat in rats led to adverse effects on postnatal health, including hypoglycemia, hyperlipidemia, and hyperproteinemia seven days after birth compared with controls.

A 2007 study in Analytical and Bioanalytical Chemistry reported detectable levels of chlormequat in blood, as well as its transfer into milk, in pigs exposed to chlormequat. While these markers have not been thoroughly investigated in humans, they raise concerns regarding potential implications for fetal exposure during pregnancy and infants’ exposure through breastfeeding.

Some studies have failed to detect significant impacts of chlormequat on reproduction in female mice or male pigs, or the fertilization capacity in male mice exposed to chlormequat during development and postnatally. The equivocal findings in the toxicological literature concerning chlormequat could stem from variations in tested doses, outcome measures, and/or funding sources. According to a 2006 study in the International Journal of Andrology, “Reports from the industry do not show any effects at these low levels.”

Click here to read more.

Comments

Source
Zero Hedge

Related Articles

Back to top button